

Question Paper Code : 11263

B.E./B.Tech. DEGREE EXAMINATION, MAY/JUNE 2016

First Semester

Civil Engineering

HS 1102 – ENGINEERING PHYSICS – I

(Common to all branches)

(Regulations 2008)

Time : Three Hours

Maximum : 100 Marks

Answer ALL questions. PART – A (10 × 2 = 20 Marks)

- 1. A quartz crystal of thickness of 0.001 metre is vibrating at resonance. Calculate the fundamental frequency. Given Y for quartz = 7.9×10^{10} N/m² and ρ for quartz = 2650 kg/m³.
- 2. How does ultrasonic soldering help to remove the oxide layer formation during soldering?
- 3. Distinguish between spontaneous and stimulated emission.
- 4. Define population inversion and pumping.
- 5. What are the mechanisms that cause attenuation or loss of signal in optical fibres ?
- 6. Define numerical aperture.
- 7. A wave function does not have any physical significance. Justify.
- 8. Find the energy of the neutron in electron volts whose deBroglie wavelength is 4 Å.
- 9. Distinguish between crystalline and amorphous solids.
- 10. Define atomic radius and coordination number.

18-06

1

11263

PART - B (5 × 16 = 80 Marks)

11.	(a)	(i) What is magnetostriction effect ? Explain in detail the principle, (8)	
		construction and working of a magnetosureton generation (8)	
		(ii) Discuss in detail the industrial applications of unrasonies.	
		UR	
	(b)	(i) Explain in detail the principle, construction and working of a prezedecenter (10)	
		oscillator.	
		(ii) Discuss briefly the detection of ultrasonic waves.	
12.	(a)	Describe the principle, construction and working of heterojunction semiconducting laser with necessary diagram.	
		OR	
	(b)	Explain the principle of Holography. How will you create a hologram of an	
		object and recreate the image of the original object?	
		(i) To be different types of fibres on the basis of refractive index and	
13.	(a)	(1) Explain the different types of hores on the basis of fermions (8)	
		(ii) Describe the double crucible technique for the optical fibre manufacturing. (8)	
		(II) Describe the double endeline terminate and a	
	(1)	E-main the working of	
	(0)	(8)	
		(i) displacement sensors (8)	
		(n) here optic endoscope	
14.	(a)	Elaborate the experiment to verify Compton effect. Attain the expression for the Compton shift wavelength.	
		OR	
	(b)	Derive the expression for Schrodinger time independent and dependent wave	
		function.	
15.	(a)	Explain the crystal structures of NaCl, ZnS and Diamond.	
		OR	
	(b)	Define packing factor and obtain the equation to find packing factor for HCP structure.	

2

\$

κ.

11263

5

.*

1

۴.

۶.